AV TELEDYNE DALSA
Everywhereyoulook

Teledyne DALSA e 880 Rue McCaffrey e St-Laurent, Québec, H4T 2C7 ¢ Canada
https://www.teledynedalsa.com/imaging/products/software/

SAP-ANOOOS8: Using Frame Grabbers & Sapera LT with
Matrox Imaging Library (MIL) Processing API

Transferring Images from Sapera LT Buffers to
Matrox MIL Processing Buffers

Overview

This application note describes how to use a Teledyne Dalsa frame grabber and
Sapera LT to acquire images and perform image processing using the Matrox Imaging
Library (MIL) API. This allows seamless migration of existing MIL applications to a
Teledyne DALSA frame grabber (or other acquisition devices, such as Genie Nano
cameras).

It demonstrates how to pass a buffer created with Sapera LT to MIL, or from MIL to
Sapera LT. The application note refers to the C++ implementation, however the
concepts are applicable to .NET as well.

For more information on processing images within callbacks or using multiple threads,
contact Teledyne DALSA.

TELEDYNE DALSA Lo in | Creale profic | Landuage
Everywherayoulook™ ,

P e Tty g s

POWERFUL SOFTWARE LIBRARIES FOR
VISION DEVELOPERS

Sapera LT

Acquisition and Control Libraries

Sapera LT 55 a free image acquisition and control software developmens toolkit [SOR) for Tefedyne
DALSA'S cameras and frame grabbers. H, nide; natwn 1 ers a nch
development ecosystern for machene wi T Upports image
. Bt

¥ ome 3

mrieralink®. Camer

Download Sapera LT SDK for

Doc #: SAP-AN0OOO8 November 22, 2018 Page 1

https://www.teledynedalsa.com/imaging/products/software/

Sapera LT SDK (full version), the image acquisition and control SDK for Teledyne
DALSA cameras and frame grabbers is available for download from the Teledyne
DALSA website:

http://teledynedalsa.com/imaging/support/downloads/sdks/

’ TELED‘I"E DAI.SA Log In | Greair profie | Language
Evarywhereyoulook™ —
Fortal i Tbolyea waping Bsn

Support ~

HOME | SUPPOIET | OUWMLORDS CENTER | SOTTWARS DEVELOPMENT KITS

Downloads

SOF TWARE DEVELOPMENT KITS

Agcess to cerdain drivers and SDH updates are resiricied 1o Teledyne DALSA custormers that have registered their development package (SO i you have
nat yel done o, please regictar your software before proceading.

® Goback to support downloads

Description Version Release date

Sapera LT SDE (full version) - Free Download B.32 20018- 06-20

Note: Administrative privileges are required to perform the Sapera LT
software installation described in this application note.

Upgrading MIL Applications to Use Teledyne DALSA
Acquisition Devices

Teledyne DALSA image acquisition devices supported by Sapera LT include both frame
grabbers and cameras that support Camera Link, CoaXPress (CXP) and Camera Link
HS (CLHS) standards.

To take advantage of Trigger-To-Image-Reliability (T2IR) features with Teledyne
DALSA products, Sapera LT is required.

To use TurboDrive with supported Teledyne DALSA GigE Vision cameras Sapera LT is
required.

Doc #: SAP-AN0OOO8 November 22, 2018 Page 2

http://teledynedalsa.com/imaging/support/downloads/sdks/
http://www.teledynedalsa.com/en/learn/knowledge-center/trigger-to-image-reliability-t2ir/
http://www.teledynedalsa.com/en/learn/knowledge-center/turbodrive/

Information on the full line of available products is available on the Teledyne DALSA
website:

https://www.teledynedalsa.com/en/products/imaging/frame-grabbers/

For example, the Xtium family is recommended when migrating applications to
Teledyne DALSA frame grabbers.

Standard Recommend Teledyne DALSA Frame Grabber
Camera Link Xtium-CL MX4

CoaXPress (CXP) Xtium-CXP PX8

Camera Link HS Xtium2-CLHS

Teledyne DALSA Installation Prerequisites

When installing a Teledyne DALSA frame grabber in your system, the following
software is required:

e Sapera LT SDK (full version 8.32 or higher)

e For applications that use Teledyne DALSA frame grabbers, the device driver
must be installed.

Sapera LT SDK and all device drivers are available for free download from the
Teledyne DALSA website:

https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/

https://www.teledynedalsa.com/en/support/downloads-center/device-drivers/

Key documentation provided with the installation of the Sapera LT SDK includes the
Getting Started Manual For Frame Grabbers or Getting Start Manual for GigE
Vision Cameras.

- Teledyne DALSA Sapera LT

. Documentation

ETE Readme

T
‘_, Sapera CamExpert

To compile sample application code verify that all necessary library and
header files are included. Error checking and acquisition format validation
should also be performed.

Doc #: SAP-ANOO0OO0S8 November 22, 2018 Page 3

https://www.teledynedalsa.com/en/products/imaging/frame-grabbers/
https://www.teledynedalsa.com/en/products/imaging/frame-grabbers/xtium-cl-mx4/
https://www.teledynedalsa.com/en/products/imaging/frame-grabbers/xtium-cxp-px8/
https://www.teledynedalsa.com/en/products/imaging/frame-grabbers/xtium2-family/
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/
https://www.teledynedalsa.com/en/support/downloads-center/device-drivers/

Creating a MIL Buffer from a Sapera LT Buffer

MIL buffers can be created using the memory already allocated by Sapera LT buffers.

This allows MIL buffers to access the same memory location without copying.

To pass a Sapera LT buffer to MIL the address of the Sapera LT buffer is required; the

MIL buffer is then constructed using this Sapera LT buffer address.

In Sapera LT, acquisition buffers are created using the SapBuffer class. The SapBuffer
class includes the SapBuffer::GetAddress() function to return the virtual (logical)
memory address assigned to the buffer.

SapBuffer::GetAddress() can only be called after the SapBuffer object has been

constructed and created. For example, to get the address of a SapBuffer pBuffer:

// Allocate Sapera buffer object taking settings directly from acquisition object
SapBuffer *pBuffer = new SapBuffer(l, pAcq);

// Create resources for Sapera buffer object

success = pBuffer->Create();

// Get the Sapera buffer object
void *pSaperaBufferAddress;

pBuffer->GetAddress(&pSaperaBufferAddress);

The SapBuffer address is passed to the MIL MbufCreate2d function which creates a
MIL buffer without copying the data. The SapBuffer pitch and height is also required

(the pitch is used since the actual buffer size may differ from the image width).

// Create the required MIL identifiers

MIL_ID MilApplication, /*
MilSystem, /*
MilDisplay, /*
MilImage; /*

// Allocate the MIL resources

Application identifier.
System identifier.
Display identifier.
Image buffer identifier.

*/
*/
*/
*/

MappAllocDefault(M_DEFAULT, &MilApplication, &VilSystem, &MilDisplay, M _NULL,

M_NULL);

// Allocate a MIL img buffer with the same size and format as the Sapera buffer
int bufferPitch = pBuffer->GetPitch(); //Sapera LT SapBuffer::GetPitch function
int bufferHeight = pBuffer->GetHeight();//Sapera LT SapBuffer::GetHeight function

// MIL MbufCreate2d function

MbufCreate2d(MilSystem, bufferPitch, bufferHeight, 8+M_UNSIGNED,

M_GRAB+M_IMAGE+M_PROC+M_DISP, M_HOST_ADDRESS+M_PITCH,M_DEFAULT, pSaperaBuffer,

&MilImage);

The MIL buffer can now be processed using the MIL API.

The MIL MbufPut group of functions can also be used to copy the Sapera LT buffer if

necessary.

Doc #: SAP-ANOOOS8

November 22, 2018

Page 4

Example Code with Processing

The following example code demonstrates how to create SapBuffers to acquire images
into. Two MIL buffers are created that access the buffer memory locations allocated by

Sapera LT and a simple MIL processing function is applied to one MIL buffer.

// SaperalT_MIL.cpp : Defines the entry point for the console application.
#include "stdafx.h"

#include "SapClassBasic.h"

#include <iostream>

#include <mil.h>

using namespace std;

// Transfer callback function is called each time a complete frame is transferred
void saperaXferCallback(SapXferCallbackInfo *pInfo)

// Display the last transferred frame
SapView *pView = (SapView *)pInfo->GetContext();
pView->Show();

¥
// Example program
//
int main()
{
//BOOL success;
// Allocate acquisition object (in this case, a frame grabber)
SapAcquisition saperaAcq(SapLocation("Xtium-CL_MX4_1", @));
// To allocate a camera a SapAcgqDevice object is used
//SapAcgDevice saperaAcq("Nano-M2590_1", FALSE); // uses camera default settings
//SapAcgDevice saperaAcq("Genie_M640", "MyCamera.ccf"); // loads configuration file
// Allocate buffer objects, taking settings directly from the acquisition
SapBuffer saperaBuffer(2, &saperaAcq);
// Allocate view object to display in an internally created window
SapView saperaView(&saperaBuffer, (HWND)-1);
// Allocate transfer object to link acquisition and buffer
SapAcqToBuf saperaTransfer(&saperaAcq, &saperaBuffer, saperaXferCallback, &saperaView);
// Create the required MIL identifiers
MIL_ID MilApplication, /* Application identifier. */
MilSystem, /* System identifier. */
MilDisplay, /* Display identifier. */
MilImage, /* Image buffer identifier. */
MilImageToProcess; /* Image buffer identifier. */
// Allocate the MIL resources
MappAllocDefault(M_DEFAULT, &MilApplication, &MilSystem, &VilDisplay, M_NULL, M_NULL);
// Create resources for all objects
saperaAcq.Create();
saperaBuffer.Create();
saperaView.Create();
saperaTransfer.Create();
// Start a continuous transfer (live grab)
saperaTransfer.Grab();
cout << "Press any key to stop grab" << endl;
cin.get();
// pause to see the unprocessed image displayed
// Stop the transfer and wait (timeout = 5 seconds)
saperaTransfer.Freeze();
saperaTransfer.Wait(5000);
Doc #: SAP-AN0O0OOS8 November 22, 2018

Page 5

// MIL processing
// Create an array to hold the buffer addresses returned using SapBuffer::GetAddress()

//vector of void pointers :address of list containing buffer addresses

std::vector<void*> virtualAddress_Buffer(saperaBuffer.GetCount());

for(int bufferIndex= @; bufferIndex < saperaBuffer.GetCount(); bufferIndex++)
saperaBuffer.GetAddress(bufferIndex, &virtualAddress_Buffer[bufferIndex]);

// Get buffer size using the Sapera LT SapBuffer::GetPitch and SapBuffer::GetHeight functions
int bufferPitch = saperaBuffer.GetPitch();

int bufferWidth = saperaBuffer.GetWidth();

int bufferHeight = saperaBuffer.GetHeight();

// Allocate MIL image buffers (here 8-bit monochrome; user applications should validate format).
MbufCreate2d(MilSystem, bufferWidth , bufferHeight, 8 + M_UNSIGNED, M_GRAB + M_IMAGE + M_PROC +
M_DISP, M_HOST_ADDRESS, bufferPitch, virtualAddress_Buffer[0], &ilImage);
MbufCreate2d(MilSystem, bufferWidth, bufferHeight, 8 + M_UNSIGNED, M_GRAB + M_IMAGE + M_PROC +
M_DISP, M_HOST_ADDRESS, bufferPitch, virtualAddress_Buffer[1], &ilImageToProcess);

cout << "Show unprocessed image in MIL display - press any key to continue "
cin.get(); // wait until a key has been hit

<< endl;

// Display an unprocessed image buffer using MIL display function.

MdispSelect(MilDisplay, MilImage);

cout << "Show processed image (MimFlip) in MIL display - press any key to continue " << endl;
cin.get(); // wait until a key has been hit

//MIL processing function MimFlip
MimFlip(MilImageToProcess, MilImageToProcess, M_FLIP_HORIZONTAL, M_DEFAULT);

// Display the processed image buffer using MIL display function.
MdispSelect(MilDisplay, MilImageToProcess);

cout << "Press any key to terminate" << endl;

cin.get(); // wait until a key has been hit

// Release resources for all objects
saperaTransfer.Destroy();
saperaView.Destroy();
saperaBuffer.Destroy();
saperaAcq.Destroy();

/* Free all allocations. */

MbufFree(MilImage);

MbufFree(MilImageToProcess);

MappFreeDefault(MilApplication, MilSystem, MilDisplay, M_NULL, M_NULL);

return 0;

Doc #: SAP-ANOO0OO0S8 November 22, 2018 Page 6

Using Sapera LT to Acquire Images into an Existing
MIL Buffer

To pass a MIL buffer to Sapera LT to use to acquire images into, the address of the
MIL buffer is required; the Sapera LT buffer is then constructed using this MIL buffer

address.

The MIL buf class includes the Mbuflnquire() function which can return the virtual
address of the MIL buffer. For example, to create a MIL buffer and get its address:

// Create the required MIL identifiers

MIL_ID MilApplication, /* Application identifier. */
MilSystem, /* System identifier. */
MilDisplay, /* Display identifier. */
MilImage; /* Image buffer identifier. */

// Allocate the MIL resources
MappAllocDefault(M_DEFAULT, &MilApplication, &MilSystem, &MilDisplay, M_NULL,

M_NULL);

// Allocate a MIL img buffer.

// This sample code uses a 1280x1024 unsigned 8-bit monochrome buffer
MbufAlloc2d(MilSystem, 1280, 1824, 8+M_UNSIGNED,
M_GRAB+M_IMAGE+M_PROC+M DISP, &MilImage);

//Get MIL buffer address
void *pMILBuffer= NULL;
MbufInquire(MilImage, M_HOST_ADDRESS, &pMILBuffer);

It is also necessary to get the pitch of the buffer, as the MIL buffer does not
correspond directly to the width of the image.

//Get MIL buffer pitch
MIL_INT bufferPitch;
MbufInquire(MilImage, M_PITCH, &bufferPitch);

The MIL buffer address is passed to the Sapera LT SapBuffer constructor which creates
a Sapera buffer object without copying the data. The buffer pitch size is passed as the
width of the buffer:

SapBuffer *pBuffer = new SapBuffer(l, &pMILBuffer, bufferPitch, bufferHeight,
SapFormatMono8, SapBuffer::TypeScatterGather);

Images can now be acquired by Teledyne DALSA devices directly into the memory
location used by MIL to process the buffer.

Doc #: SAP-ANOO0OO0S8 November 22, 2018 Page 7

Example Code with Processing

The following example code demonstrates how to create SapBuffers to grab into
memory already allocated by MIL buffers. 2 buffers are created and a simple MIL
processing function is applied to one MIL buffer.

// SaperalLT_MIL.cpp : Defines the entry point for the console application.
#include "stdafx.h"

#include "SapClassBasic.h"

#include <iostream>

#include <mil.h>

using namespace std;

// Transfer callback function is called each time a complete frame is transferred
void saperaXferCallback(SapXferCallbackInfo *pInfo)

{
// Display the last transferred frame
SapView *pView = (SapView *)pInfo->GetContext();
pView->Show();
¥
// Example program
//
int main()
{
// Create the required MIL identifiers
MIL_ID MilApplication, /* Application identifier. */
MilSystem, /* System identifier. *)
MilDisplay, /* Display identifier. /A
MilImage, /* Image buffer identifier. */
MilImageToProcess; /* Image buffer identifier. */

// Allocate the MIL resources
MappAllocDefault(M_DEFAULT, &MilApplication, &MilSystem, &ilDisplay, M_NULL, M_NULL);

// Create variables for the buffer width and height (here a 1280x1024 image is used)
int bufferWidth = 1280;
int bufferHeight = 1024;

// Allocate MIL image buffers.

MbufAlloc2d(MilSystem, bufferWidth, bufferHeight, 8 + M_UNSIGNED, M_GRAB + M_IMAGE + M_PROC +
M_DISP, &MillImage);

MbufAlloc2d(MilSystem, bufferWidth, bufferHeight, 8 + M_UNSIGNED, M_GRAB + M_IMAGE + M_PROC +
M_DISP, &MilImageToProcess);

//Get MIL buffer pitch
MIL_INT bufferPitch;
MbufInquire(MilImage, M_PITCH, &bufferPitch);

// Create an array to hold the buffer addresses

void* virtualAddress_Buffer[2];

virtualAddress_Buffer[0] = (void *)MbufInquire(MilImage, M_HOST_ADDRESS, M_NULL);
virtualAddress_Buffer[1] = (void *)MbufInquire(MilImageToProcess, M_HOST_ADDRESS, M_NULL);

// Allocate Sapera acquisition object (in this case, a frame grabber)
SapAcquisition saperaAcq(SapLocation("Xtium-CL_MX4_1", @));

// To allocate a camera a SapAcgqDevice object is used

//SapAcgDevice saperaAcq("Nano-M2590_1", FALSE); // uses camera default settings

//SapAcgDevice saperaAcq("Genie_M640", "MyCamera.ccf");//loads configuration file

// Create SapBuffers (can change count if necessary)

SapBuffer saperaBuffer(2, virtualAddress_Buffer, bufferPitch, bufferHeight,
SapFormatMono8, SapBuffer::TypeScatterGather);

// Allocate view object to display in an internally created window

SapView saperaView(&saperaBuffer, (HWND)-1);

Doc #: SAP-ANOO0OO0S8 November 22, 2018 Page 8

// Allocate transfer object to link acquisition and buffer

SapAcqToBuf saperaTransfer(&saperaAcq, &saperaBuffer, saperaXferCallback, &saperaView);

// This is for a camera object

//SapAcgDeviceToBuf *pTransfer = new SapAcqDeviceToBuf(pAcq, pBuffer, XferCallback, pView);

// Create resources for all objects
saperaAcq.Create();
saperaBuffer.Create();
saperaView.Create();
saperaTransfer.Create();

// Start a continuous transfer (live grab)
saperaTransfer.Grab();

cout << "Press any key to stop grab" << endl;
cin.get();

// pause to see the unprocessed image displayed

// Stop the transfer and wait (timeout = 5 seconds)
saperaTransfer.Freeze();

saperaTransfer.Wait(5000);

// MIL processing

cout << "Show unprocessed image in MIL display - press any key to continue
cin.get(); // wait until a key has been hit

<< endl;

// Display an unprocessed image buffer using MIL display function.
MdispSelect(MilDisplay, MilImage);
cout << "Show processed image (MimFlip) in MIL display - press any key to continue
cin.get(); // wait until a key has been hit

<< endl;

//MIL processing function MimFlip
MimFlip(MilImageToProcess, MilImageToProcess, M_FLIP_HORIZONTAL, M_DEFAULT);

// Display the processed image buffer using MIL display function.
MdispSelect(MilDisplay, MilImageToProcess);

cout << "Press any key to terminate" << endl;

cin.get(); // wait until a key has been hit

// Release resources for all objects
saperaTransfer.Destroy();
saperaView.Destroy();
saperaBuffer.Destroy();
saperaAcq.Destroy();

/* Free all allocations. */

MbufFree(MilImage);

MbufFree(MilImageToProcess);

MappFreeDefault(MilApplication, MilSystem, MilDisplay, M_NULL, M_NULL);

return 0;

Doc #: SAP-ANOO0OO0S8 November 22, 2018 Page 9

Note: SapBuffers are allocated with the MIL buffer’s pitch as the width.
This results in padding pixels when displaying the Sapera buffer with
SapView. The MIL display mechanism compensates automatically for the
difference in width and pitch when display the MIL buffer. It is
recommended not to manipulate buffer areas outside the image
boundaries since MIL may use this region for internal purposes.

The Sapera buffer uses the MIL buffer’s pitch as the width (in this example, 32 pixels
wider than the image width).

The MIL display mechanism accounts for the difference in image width and pitch.

Doc #: SAP-AN0OOO8 November 22, 2018 Page 10

	Transferring Images from Sapera LT Buffers to Matrox MIL Processing Buffers
	Overview
	Upgrading MIL Applications to Use Teledyne DALSA Acquisition Devices

	Teledyne DALSA Installation Prerequisites
	Creating a MIL Buffer from a Sapera LT Buffer
	Example Code with Processing

	Using Sapera LT to Acquire Images into an Existing MIL Buffer
	Example Code with Processing

